(八)目标跟踪中参数估计(似然、贝叶斯估计)理论知识

目录

前言

一、统计学基础知识

(一)随机变量

(二)全概率公式

(三)高斯分布及其性质

二、似然是什么?

(一)概率和似然

(二)极大似然估计

三、贝叶斯估计

(一)古典统计学与贝叶斯统计学的区别

(二)贝叶斯公式

总结


前言

        目标跟踪过程可以看做参数估计的过程,即利用测量信息实时对目标状态进行估计,需要用到很多概率统计的基础知识。在此针对参数估计中常用的基础知识和概念进行总结和讲解,根据自己的经验对似然函数和贝叶斯估计进行了详细的讲解,希望能为大家深入理解目标跟踪过程提供帮助。


一、统计学基础知识

(一)随机变量

        随机变量的值可以理解为“随机事件中的变量”, 是某随机试验(常见例子:抛硬币)的结果。在目标跟踪过程中,随机变量可以是跟踪目标的位置或者速度。根据随机变量是否连续可以将其分为离散随机变量和连续随机变量。

        连续随机变量x用概率密度函数(pdf)来表示,变量取值在一段区域内的概率为pdf在该段的积分,并且积分总和为1。公式为:P\left ( x \right )\geq 0,\int P\left ( x \right )dx = 1

        离散随机变量x的取值为离散数值,不同取值的概率构成概率质量函数(pmf),所有取值的概率和为一。公式为:P\left ( x =i\right )\geq 0,\int P\left ( x \right )dx = 1

(二)全概率公式

        假设已知变量x和变量z的联合分布P\left ( x,z \right ),其中变量z的分布P\left ( z \right )称之为边缘分布。边缘分布可以通过联合概率积分或者累加的方式消除其中一个变量的影响从而获得边缘分布。

        离散变量:P\left ( z \right )=\sum _{x\in S\left ( x \right )}P\left ( x,z \right )=\sum _{x\in S\left ( x \right )}P\left ( x \right )P\left ( z\mid x \right )

        连续变量:P\left ( z \right )=\int _{x\in S\left ( x \right )}P\left ( x,z \right ) dx=\int _{x\in S\left ( x \right )}P\left ( x \right )P\left ( z\mid x \right )dx

(三)高斯分布及其性质

        对于随机变量,具有两个非常重要的特性,即均值(期望)和(协)方差。均值体现了随机变量的平均值,协方差体现了随机变量的分散程度。当随机变量为多维时,方差变为协方差。

        假设Y为多维变量,均值和协方差的定义如下:

E\left \{ Y\right \}=\int Yp\left ( Y \right )dY

Cov\left \{ Y \right \}=E\left \{ \left [ Y-E\left \{ Y \right \}\right ] \left [ Y-E\left \{ Y \right \} \right ]^{\top }\right \}

        目标跟踪过程中常用到的分布形式为高斯分布,也称为正态分布。正态分布可以表示为x\sim N\left ( \mu ,Q \right )\muQ为高斯分布的两个参数,分布的pdf表示为:

P\left ( x \right ) = N\left ( x\mid \mu , Q\right ) = \frac{1}{\sqrt{2\pi Q}}exp\left ( \frac{1}{2} \left ( x-\mu \right )^{\top }Q^{-1}\left ( x-\mu \right )\right )

二、似然是什么?

(一)概率和似然

        概率的概念是已知分布形式和参数,度量某个样本的可能性(已知因,度量果);似然是已知分布形式和对应生成的样本,度量某个未知分布参数的可能性(已知果,度量因)。概率和似然正好是分布的两个方面,样本是分布表现的现象(果),分布参数是分布的本质(因)。

        似然(likehood)必须满足以下两个条件:

        1.对于某个参数的分布形式必须是事先假设已知(先验),而分布参数未知,比如假设分布形式为正态分布,伯努利分布等。

        2.必须有来自这个分布的独立采样的样本(也就是必须要有数据)。

(二)极大似然估计

        基于上述似然的条件,针对待估计的参数,使用一堆已知的样本去反推某个参数估计值,作为这个分布参数的可能性(似然)。通俗来讲,就是根据已知生成的样本,希望找到能最大概率生成观测数据的分布参数\theta ^{\ast }

        若观测值为Z,被估计参数为\theta,则对应的方法可以描述为:

\theta ^{\ast } = arg \, \, max_{\theta } \, \, p\left ( Z\mid \theta\right )

        公式通过导数为0来进行求解。

        想进一步了解的同学可以观看下面的链接:
参数估计(二).最大似然估计icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/55791843              

三、贝叶斯估计

(一)古典统计学与贝叶斯统计学的区别

        1.概念不同:古典统计学派又叫做频率学派,所研究的对象是能大量重复的随机现象。例如例如掷硬币试验就是可以大量重复的随机现象,结果包括正面和反面。通过进行大量的掷硬币试验,发现正、反面朝上的概率分别稳定在0.5左右。但是某些时间例如明天车子抛锚的概率是60%,这里的概率就不能用频率来理解,因为车子不可能一直坏。贝叶斯学派认为:一个事件的概率是人们根据经验对该事件发生可能性所给出的个人信念,这种概率称为主观概率。贝叶斯学派允许利用经验获得的先验信息,以提升统计推断的质量。

        2.对参数的理解不同:古典统计把θ看成一个常数,对于某种现象进行统计推断。贝叶斯统计把参数θ看成一个随机变量来进行统计推断,用概率分布来描述θ的未知状况,θ不是固定的常值。

        3.侧重点不同:古典统计学研究重心为总体,不是样本。贝叶斯统计学是通过将样本观测值与先验相结合,共同得到后验值,侧重的重心为样本。

(二)贝叶斯公式

        贝叶斯公式的核心就是后验概率正比于先验概率乘以似然。如下图所示:

        先验分布:指某件事发生的概率。

        后验分布:指某一件事在其他事件发生的前提下发生的概率。

        先验分布是指通过主观判断或者依据过去经验,对概率进行预测,之后通过越来越多的观测值来修正预测,得到最后的后验分布。需要注意的是贝叶斯公式的核心在于不消除未知变量的不确定性,而是通过越来越多的新的观测点来持续更新我们对于未知变量不确定性的认识,提升我们对于不确定性的信心。

        针对连续变量,贝叶斯公式可以写为:

\pi \left ( \theta _{i}\mid x \right )=\frac{\pi \left ( \theta _{i}\right )f(x\mid \theta _{i})}{\int _{\theta }f(x\mid \theta )\pi \left ( \theta \right )d\theta }

        1. 其中\pi \left ( \theta \mid x \right )为后验概率,f\left ( x\mid \theta \right )为观测到的样本分布,也就是似然函数。

        2.竖线左边才是我们想要的,积分区间\theta是指\theta所有可能取值的域,\pi \left ( \theta \mid x \right )是在已知x的前提下在\theta域内关于\theta的一个概率分布。

        3.在已知样本x的前提下,不同的\theta取值对应的可能性不同(也就是概率),也就是似然函数f\left ( x\mid \theta \right )


总结

        本文针对目标跟踪中用到的一些概率统计基础知识进行了总结梳理,重点讲述了似然的概念 、古典统计学派与贝叶斯学派的区别、贝叶斯公式的理解,适用于学习目标跟踪的读者,读者可以通过。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/503827.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

国内顶级大牛整理:分布式消息中间件实践笔记+分布式核心原理解析

XMPP JMS RabbitMQ 简介 工程实例 Java 访问RabbitMQ实例 Spring 整合RabbitMQ 基于RabbitMQ的异步处理 基于RabbitMQ的消息推送 RabbitMQ实践建议 虚拟主机 消息保存 消息确认模式 消费者应答 流控机制 通道 总结 ActiveMQ 简介 工程实例 Java 访问ActiveMQ实例…

机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言

机器人寻路算法双向A*(Bidirectional A*)算法的实现C、Python、Matlab语言 最近好久没更新,在搞华为的软件挑战赛(软挑),好卷只能说。去年还能混进32强,今年就比较迷糊了,这东西对我…

EasyRecovery2024汉化精简版,无需注册

EasyRecovery2024是世界著名数据恢复公司 Ontrack 的技术杰作,它是一个威力非常强大的硬盘数据恢复软件。能够帮你恢复丢失的数据以及重建文件系统。 EasyRecovery不会向你的原始驱动器写入任何东东,它主要是在内存中重建文件分区表使数据能够安全地传输…

FL Studio21.2.3中文版软件新功能介绍及下载安装步骤教程

FL Studio21.2中文版的适用人群非常广泛,主要包括以下几类: FL Studio 21 Win-安装包下载如下: https://wm.makeding.com/iclk/?zoneid55981 FL Studio 21 Mac-安装包下载如下: https://wm.makeding.com/iclk/?zoneid55982 音乐制作人&#xff1a…

C#/BS手麻系统源码 手术麻醉管理系统源码 商业项目源码

C#/BS手麻系统源码 手术麻醉管理系统源码 商业项目源码 手麻系统从麻醉医生实际工作环境和流程需求方面设计,与HIS,LIS,PACS,EMR无缝连接,方便查看患者的信息;实现术前、术中、术后手术麻醉信息全记录;减少麻醉医师在…

Spring Boot配置⽂件的格式

1、Spring Boot 配置⽂件有以下三种: (1)application.properties (2)application.yml (3)application.yaml 2、yml 为yaml的简写, 实际开发中出现频率最⾼. yaml 和yml 的使⽤⽅式⼀样 3、 4…

Vue + .NetCore前后端分离,不一样的快速发开框架

摘要: 随着前端技术的快速发展,Vue.NetCore框架已成为前后端分离开发中的热门选择。本文将深入探讨Vue.NetCore前后端分离的快速开发框架,以及它如何助力开发人员提高效率、降低开发复杂度。文章将从基础功能、核心优势、适用范围、依赖环境等…

软考之零碎片段记录(一)

2023上半年选择题 一、流水线周期 注:(n-1) * 流水线周期 (取址时间分析时间执行时间) 注:流水线周期:指令中最耗时的部分(取址或者分析或者执行) # 耗时最高的部分 * &#xff0…

单例设计模式(3)

单例模式(3) 实现集群环境下的分布式单例类 如何理解单例模式中的唯一性? 单例模式创建的对象是进程唯一的。以springboot应用程序为例,他是一个进程,可能包含多个线程,单例代表在这个进程的某个类是唯一…

Unity 基于Rigidbody2D模块的角色移动

制作好站立和移动的动画后 控制器设计 站立 移动 角色移动代码如下: using System.Collections; using System.Collections.Generic; using Unity.VisualScripting; using UnityEngine;public class p1_c : MonoBehaviour {// 获取动画组件private Animator …

LeetCode Python - 84. 柱状图中最大的矩形

目录 题目描述解法方法一方法二 运行结果方法一方法二 题目描述 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大面积。 示例 1: 输入:heights …

《最小阻力之路》利用最小阻力路径,采用创造性思维模式,更有效地实现个人愿景和目标 - 三余书屋 3ysw.net

最小阻力之路 大家好,今天我们分享《最小阻力之路》。我们时常听到有人感叹,明明懂得那么多道理,为何生活过得不如意呢?这本书从某种角度回应了这个疑问,作者分析了我们在人生旅途中屡次失败的原因,提出了…

图像分割论文阅读:Automatic Polyp Segmentation via Multi-scale Subtraction Network

这篇论文的主要内容是介绍了一种名为多尺度差值网络(MSNet)的自动息肉分割方法。 1,模型整体结构 整体结构包括编码器,解码器,编码器和解码器之间是多尺度差值模块模块(MSM),以及一…

使用Python实现ID3决策树中特征选择的先后顺序,字节跳动面试真题

def empty1(pri_data): hair [] #[‘长’, ‘短’, ‘短’, ‘长’, ‘短’, ‘短’, ‘长’, ‘长’] voice [] #[‘粗’, ‘粗’, ‘粗’, ‘细’, ‘细’, ‘粗’, ‘粗’, ‘粗’] sex [] #[‘男’, ‘男’, ‘男’, ‘女’, ‘女’, ‘女’, ‘女’, ‘女’] for o…

刷题日记——国家名称排序

7.国家名称排序 分析 一开始打算用二维的字符数组来操作,但是数组指针玩不太明白,于是改用结构体,结构体country里面仅一个成员name(字符数组),这样就有两种解题方法: 方法一:使用…

数字化时代多系统安全运维解决方案

添加图片注释,不超过 140 字(可选) 添加图片注释,不超过 140 字(可选) 添加图片注释,不超过 140 字(可选) 添加图片注释,不超过 140 字(可选&…

Google 邀请您参加 Build with AI 2024 线下活动

AI 技术正真实地影响并重构着当下的一切,在这个充满无限可能的领域,我们坚信开放的理念和大家的共同努力将推动我们不断创新。现在,Google 诚挚地邀请从事不同工作的开发者参与我们的 Build with AI 2024 线下活动,一同探索 Googl…

软考高级架构师:区块链技术概念和例题

作者:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

不同Python版本和wxPython版本用pyinstaller打包文件大小对比

1、确定wxPython和Python版本的对应关系 在这里可以找到Python支持的所有wxPython版本:https://pypi.tuna.tsinghua.edu.cn/simple/wxpython/ 由于Python从3.6版本开始支持f字符串、从3.9版本开始不支持Windows7操作系统,所以我仅筛选3.6-3.8之间的版本…

飞致云开源社区月度动态报告(2024年3月)

自2023年6月起,中国领先的开源软件公司FIT2CLOUD飞致云以月度为单位发布《飞致云开源社区月度动态报告》,旨在向广大社区用户同步飞致云旗下系列开源软件的发展情况,以及当月主要的产品新版本发布、社区运营成果等相关信息。 飞致云开源大屏…
最新文章